Copied to
clipboard

G = C42.164D10order 320 = 26·5

164th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.164D10, C10.1022- 1+4, C10.1412+ 1+4, C20⋊Q841C2, C4⋊C4.119D10, C4.D209C2, C422C27D5, D102Q842C2, D10⋊Q845C2, (C4×Dic10)⋊16C2, D10⋊D4.5C2, (C4×C20).36C22, C22⋊C4.82D10, Dic54D438C2, (C2×C10).254C24, (C2×C20).605C23, (C2×D20).39C22, D10.13D443C2, C2.66(D48D10), C23.60(C22×D5), Dic5.22(C4○D4), Dic5.5D447C2, C22.D2031C2, C4⋊Dic5.319C22, (C22×C10).68C23, C22.275(C23×D5), Dic5.14D447C2, C23.D5.69C22, D10⋊C4.47C22, (C4×Dic5).239C22, (C2×Dic5).277C23, (C22×D5).113C23, C2.66(D4.10D10), C510(C22.36C24), (C2×Dic10).264C22, C10.D4.127C22, (C22×Dic5).154C22, C4⋊C47D542C2, C4⋊C4⋊D544C2, C2.101(D5×C4○D4), (C5×C422C2)⋊9C2, C10.212(C2×C4○D4), (C2×C4×D5).145C22, (C5×C4⋊C4).206C22, (C2×C4).210(C22×D5), (C2×C5⋊D4).74C22, (C5×C22⋊C4).79C22, SmallGroup(320,1382)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.164D10
C1C5C10C2×C10C22×D5C2×C4×D5D102Q8 — C42.164D10
C5C2×C10 — C42.164D10
C1C22C422C2

Generators and relations for C42.164D10
 G = < a,b,c,d | a4=b4=1, c10=d2=b2, ab=ba, cac-1=ab2, dad-1=a-1, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c9 >

Subgroups: 798 in 216 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C422C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C22.36C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, C4×Dic10, C4.D20, Dic5.14D4, Dic54D4, D10⋊D4, Dic5.5D4, C22.D20, C20⋊Q8, C4⋊C47D5, D10.13D4, D10⋊Q8, D102Q8, C4⋊C4⋊D5, C5×C422C2, C42.164D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.36C24, C23×D5, D5×C4○D4, D48D10, D4.10D10, C42.164D10

Smallest permutation representation of C42.164D10
On 160 points
Generators in S160
(1 88 73 50)(2 99 74 41)(3 90 75 52)(4 81 76 43)(5 92 77 54)(6 83 78 45)(7 94 79 56)(8 85 80 47)(9 96 61 58)(10 87 62 49)(11 98 63 60)(12 89 64 51)(13 100 65 42)(14 91 66 53)(15 82 67 44)(16 93 68 55)(17 84 69 46)(18 95 70 57)(19 86 71 48)(20 97 72 59)(21 135 144 116)(22 126 145 107)(23 137 146 118)(24 128 147 109)(25 139 148 120)(26 130 149 111)(27 121 150 102)(28 132 151 113)(29 123 152 104)(30 134 153 115)(31 125 154 106)(32 136 155 117)(33 127 156 108)(34 138 157 119)(35 129 158 110)(36 140 159 101)(37 131 160 112)(38 122 141 103)(39 133 142 114)(40 124 143 105)
(1 135 11 125)(2 107 12 117)(3 137 13 127)(4 109 14 119)(5 139 15 129)(6 111 16 101)(7 121 17 131)(8 113 18 103)(9 123 19 133)(10 115 20 105)(21 60 31 50)(22 89 32 99)(23 42 33 52)(24 91 34 81)(25 44 35 54)(26 93 36 83)(27 46 37 56)(28 95 38 85)(29 48 39 58)(30 97 40 87)(41 145 51 155)(43 147 53 157)(45 149 55 159)(47 151 57 141)(49 153 59 143)(61 104 71 114)(62 134 72 124)(63 106 73 116)(64 136 74 126)(65 108 75 118)(66 138 76 128)(67 110 77 120)(68 140 78 130)(69 112 79 102)(70 122 80 132)(82 158 92 148)(84 160 94 150)(86 142 96 152)(88 144 98 154)(90 146 100 156)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 153 31 143)(22 142 32 152)(23 151 33 141)(24 160 34 150)(25 149 35 159)(26 158 36 148)(27 147 37 157)(28 156 38 146)(29 145 39 155)(30 154 40 144)(41 86 51 96)(42 95 52 85)(43 84 53 94)(44 93 54 83)(45 82 55 92)(46 91 56 81)(47 100 57 90)(48 89 58 99)(49 98 59 88)(50 87 60 97)(61 74 71 64)(62 63 72 73)(65 70 75 80)(66 79 76 69)(67 68 77 78)(101 120 111 110)(102 109 112 119)(103 118 113 108)(104 107 114 117)(105 116 115 106)(121 128 131 138)(122 137 132 127)(123 126 133 136)(124 135 134 125)(129 140 139 130)

G:=sub<Sym(160)| (1,88,73,50)(2,99,74,41)(3,90,75,52)(4,81,76,43)(5,92,77,54)(6,83,78,45)(7,94,79,56)(8,85,80,47)(9,96,61,58)(10,87,62,49)(11,98,63,60)(12,89,64,51)(13,100,65,42)(14,91,66,53)(15,82,67,44)(16,93,68,55)(17,84,69,46)(18,95,70,57)(19,86,71,48)(20,97,72,59)(21,135,144,116)(22,126,145,107)(23,137,146,118)(24,128,147,109)(25,139,148,120)(26,130,149,111)(27,121,150,102)(28,132,151,113)(29,123,152,104)(30,134,153,115)(31,125,154,106)(32,136,155,117)(33,127,156,108)(34,138,157,119)(35,129,158,110)(36,140,159,101)(37,131,160,112)(38,122,141,103)(39,133,142,114)(40,124,143,105), (1,135,11,125)(2,107,12,117)(3,137,13,127)(4,109,14,119)(5,139,15,129)(6,111,16,101)(7,121,17,131)(8,113,18,103)(9,123,19,133)(10,115,20,105)(21,60,31,50)(22,89,32,99)(23,42,33,52)(24,91,34,81)(25,44,35,54)(26,93,36,83)(27,46,37,56)(28,95,38,85)(29,48,39,58)(30,97,40,87)(41,145,51,155)(43,147,53,157)(45,149,55,159)(47,151,57,141)(49,153,59,143)(61,104,71,114)(62,134,72,124)(63,106,73,116)(64,136,74,126)(65,108,75,118)(66,138,76,128)(67,110,77,120)(68,140,78,130)(69,112,79,102)(70,122,80,132)(82,158,92,148)(84,160,94,150)(86,142,96,152)(88,144,98,154)(90,146,100,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,153,31,143)(22,142,32,152)(23,151,33,141)(24,160,34,150)(25,149,35,159)(26,158,36,148)(27,147,37,157)(28,156,38,146)(29,145,39,155)(30,154,40,144)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,74,71,64)(62,63,72,73)(65,70,75,80)(66,79,76,69)(67,68,77,78)(101,120,111,110)(102,109,112,119)(103,118,113,108)(104,107,114,117)(105,116,115,106)(121,128,131,138)(122,137,132,127)(123,126,133,136)(124,135,134,125)(129,140,139,130)>;

G:=Group( (1,88,73,50)(2,99,74,41)(3,90,75,52)(4,81,76,43)(5,92,77,54)(6,83,78,45)(7,94,79,56)(8,85,80,47)(9,96,61,58)(10,87,62,49)(11,98,63,60)(12,89,64,51)(13,100,65,42)(14,91,66,53)(15,82,67,44)(16,93,68,55)(17,84,69,46)(18,95,70,57)(19,86,71,48)(20,97,72,59)(21,135,144,116)(22,126,145,107)(23,137,146,118)(24,128,147,109)(25,139,148,120)(26,130,149,111)(27,121,150,102)(28,132,151,113)(29,123,152,104)(30,134,153,115)(31,125,154,106)(32,136,155,117)(33,127,156,108)(34,138,157,119)(35,129,158,110)(36,140,159,101)(37,131,160,112)(38,122,141,103)(39,133,142,114)(40,124,143,105), (1,135,11,125)(2,107,12,117)(3,137,13,127)(4,109,14,119)(5,139,15,129)(6,111,16,101)(7,121,17,131)(8,113,18,103)(9,123,19,133)(10,115,20,105)(21,60,31,50)(22,89,32,99)(23,42,33,52)(24,91,34,81)(25,44,35,54)(26,93,36,83)(27,46,37,56)(28,95,38,85)(29,48,39,58)(30,97,40,87)(41,145,51,155)(43,147,53,157)(45,149,55,159)(47,151,57,141)(49,153,59,143)(61,104,71,114)(62,134,72,124)(63,106,73,116)(64,136,74,126)(65,108,75,118)(66,138,76,128)(67,110,77,120)(68,140,78,130)(69,112,79,102)(70,122,80,132)(82,158,92,148)(84,160,94,150)(86,142,96,152)(88,144,98,154)(90,146,100,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,153,31,143)(22,142,32,152)(23,151,33,141)(24,160,34,150)(25,149,35,159)(26,158,36,148)(27,147,37,157)(28,156,38,146)(29,145,39,155)(30,154,40,144)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,74,71,64)(62,63,72,73)(65,70,75,80)(66,79,76,69)(67,68,77,78)(101,120,111,110)(102,109,112,119)(103,118,113,108)(104,107,114,117)(105,116,115,106)(121,128,131,138)(122,137,132,127)(123,126,133,136)(124,135,134,125)(129,140,139,130) );

G=PermutationGroup([[(1,88,73,50),(2,99,74,41),(3,90,75,52),(4,81,76,43),(5,92,77,54),(6,83,78,45),(7,94,79,56),(8,85,80,47),(9,96,61,58),(10,87,62,49),(11,98,63,60),(12,89,64,51),(13,100,65,42),(14,91,66,53),(15,82,67,44),(16,93,68,55),(17,84,69,46),(18,95,70,57),(19,86,71,48),(20,97,72,59),(21,135,144,116),(22,126,145,107),(23,137,146,118),(24,128,147,109),(25,139,148,120),(26,130,149,111),(27,121,150,102),(28,132,151,113),(29,123,152,104),(30,134,153,115),(31,125,154,106),(32,136,155,117),(33,127,156,108),(34,138,157,119),(35,129,158,110),(36,140,159,101),(37,131,160,112),(38,122,141,103),(39,133,142,114),(40,124,143,105)], [(1,135,11,125),(2,107,12,117),(3,137,13,127),(4,109,14,119),(5,139,15,129),(6,111,16,101),(7,121,17,131),(8,113,18,103),(9,123,19,133),(10,115,20,105),(21,60,31,50),(22,89,32,99),(23,42,33,52),(24,91,34,81),(25,44,35,54),(26,93,36,83),(27,46,37,56),(28,95,38,85),(29,48,39,58),(30,97,40,87),(41,145,51,155),(43,147,53,157),(45,149,55,159),(47,151,57,141),(49,153,59,143),(61,104,71,114),(62,134,72,124),(63,106,73,116),(64,136,74,126),(65,108,75,118),(66,138,76,128),(67,110,77,120),(68,140,78,130),(69,112,79,102),(70,122,80,132),(82,158,92,148),(84,160,94,150),(86,142,96,152),(88,144,98,154),(90,146,100,156)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,153,31,143),(22,142,32,152),(23,151,33,141),(24,160,34,150),(25,149,35,159),(26,158,36,148),(27,147,37,157),(28,156,38,146),(29,145,39,155),(30,154,40,144),(41,86,51,96),(42,95,52,85),(43,84,53,94),(44,93,54,83),(45,82,55,92),(46,91,56,81),(47,100,57,90),(48,89,58,99),(49,98,59,88),(50,87,60,97),(61,74,71,64),(62,63,72,73),(65,70,75,80),(66,79,76,69),(67,68,77,78),(101,120,111,110),(102,109,112,119),(103,118,113,108),(104,107,114,117),(105,116,115,106),(121,128,131,138),(122,137,132,127),(123,126,133,136),(124,135,134,125),(129,140,139,130)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C···4G4H4I4J4K4L4M4N4O5A5B10A···10F10G10H20A···20L20M···20R
order1222222444···4444444445510···10101020···2020···20
size111142020224···41010101020202020222···2884···48···8

50 irreducible representations

dim1111111111111112222244444
type++++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D102+ 1+42- 1+4D5×C4○D4D48D10D4.10D10
kernelC42.164D10C4×Dic10C4.D20Dic5.14D4Dic54D4D10⋊D4Dic5.5D4C22.D20C20⋊Q8C4⋊C47D5D10.13D4D10⋊Q8D102Q8C4⋊C4⋊D5C5×C422C2C422C2Dic5C42C22⋊C4C4⋊C4C10C10C2C2C2
# reps1111112111111112426611444

Matrix representation of C42.164D10 in GL6(𝔽41)

32390000
4090000
0021300
00283900
0000213
00002839
,
40180000
910000
000010
000001
001000
000100
,
900000
1320000
0032323939
00919227
002299
0039143222
,
900000
090000
0032323939
00199272
002299
0014392232

G:=sub<GL(6,GF(41))| [32,40,0,0,0,0,39,9,0,0,0,0,0,0,2,28,0,0,0,0,13,39,0,0,0,0,0,0,2,28,0,0,0,0,13,39],[40,9,0,0,0,0,18,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[9,1,0,0,0,0,0,32,0,0,0,0,0,0,32,9,2,39,0,0,32,19,2,14,0,0,39,2,9,32,0,0,39,27,9,22],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,19,2,14,0,0,32,9,2,39,0,0,39,27,9,22,0,0,39,2,9,32] >;

C42.164D10 in GAP, Magma, Sage, TeX

C_4^2._{164}D_{10}
% in TeX

G:=Group("C4^2.164D10");
// GroupNames label

G:=SmallGroup(320,1382);
// by ID

G=gap.SmallGroup(320,1382);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,268,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽